SGLT2 inhibitors (SGLT2i) may have protective effects on the kidney in diabetic nephropathy (DN). To evaluate the impact on kidney function, we here evaluated the effects of the SGLT2i dapagliflozin on glomerular filtration rate (GFR) in animal models of DN.

INTRODUCTION

To evaluate the effects on hyperfiltration, db/db mice fed a high protein diet (60% kcal from protein, known to accelerate DN) were treated with vehicle or dapagliflozin 10mg/kg orally once daily for 4 weeks. To evaluate the effects on GFR decline, uninephrectomized (Unx) Spontaneously Diabetic Torii (SDT) fatty rats were fed a 0.3% salt diet and treated without (control) or with dapagliflozin at 1mg/kg/day in the diet for 10 weeks. To measure GFR, animals were injected i.v. with FITC-sinistrin or FITC-inulin. Data are shown as mean ± SEM, n=8 per group.

METHODS

Dapagliflozin reduces hyperglycemia and hyperfiltration in db/db mice on high protein diet

Dapagliflozin reduces HbA1c and blood pressure, prevents GFR decline and improves kidney lesions in Unx-SDT fatty rat on a 0.3% salt diet

RESULTS

CONCLUSION

- Dapagliflozin shows significant benefits on kidney dysfunction by reducing hyperfiltration and preventing GFR decline in animal models of DN.