Diet-Induced NASH (DIN™) mouse model associated with metabolic syndrome

Key benefits

Unique proprietary diet-induced animal model that enables pharmacological studies targeting NASH and liver fibrosis: a human-like context including obesity and insulin resistance.

The diet-induced DIN™ NASH mouse model provides:
- A model pharmacologically validated with the FXR agonist Obeticholic acid to study NASH and liver fibrosis in the context of metabolic syndrome
- A model mimicking the human risk factors such as the fat-enriched diet which plays a major role in the development of NASH
- The model can be run for 16 weeks for liver steatosis/hepatocyte ballooning, or 25 weeks for advanced liver complications (inflammation/fibrosis)

25 WEEKS OF DIET - MODEL CHARACTERISTICS

OCA SUBSTANTIALLY IMPROVES NAFLD SCORING

16 WEEKS OF DIET - MODEL CHARACTERISTICS

OCA REDUCES LIVER STEATOSIS AND BALLOONING SCORING

OCA REDUCES DIET-INDUCED OBESITY & INSULIN RESISTANCE

ANIMAL MODEL

- **Background strain/gender:** C57BL/6J mice, male
- **In house “Diet-Induced NASH” (DIN™):** high fat/high cholesterol + fructose in drinking water for 16 or 25 weeks
- **Reference compounds:** FXR agonist Obeticholic Acid (OCA) 25mg/kg/day in the diet (DIN+OCA)
- **Experimental design:**
 - 25% high fat/high cholesterol diet
 - 66% high fat/high cholesterol diet
 - Liver lipids
 - Histochemistry
 - NAS score
 - Gene expression

Physiogenex SAS

- Prologue Biotech
- 516 Rue Pierre et Marie Curie
- 31670 Labège Cedex, France
- Phone: +33 5 61 287 040
- business@physiogenex.com
- www.physiogenex.com