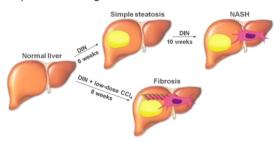




# Diet-induced NASH mouse models associated with metabolic syndrome

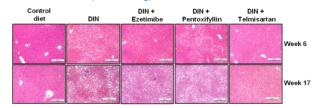
- Unique diet-induced mouse models of non-alcoholic steatohepatitis (NASH)
- physiopathological context


Unique proprietary diet-induced animal models that enables pharmacological studies targeting NASH or fibrosis, in obesity and insulin resistance context

The diet-induced DIN<sup>TM</sup> NASH *in vivo* package features:

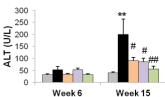
- Mouse models to study NASH or fibrosis, associated with metabolic syndrome
- Allows to study mechanisms involved in NAFLD progression
- Predictive model: similar to human situation where the diet plays a major role in the development of NAFLD

#### **ANIMAL MODEL**


- Background strain/gender: C57BL/6J mice, male
- In house "Diet-Induced NASH" (DIN™): High Fat +cholesterol +
- Reference compounds: ezetimibe, pentoxifyllin and telmisartan
- Experimental design:



# PATHOPHYSIOLOGICAL FEATURES

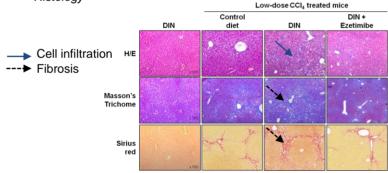



### LIVER STEATOSIS (HE staining)

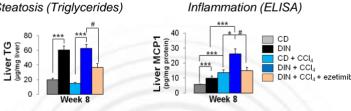


# **LIVER INJURIES**

#### Plasma biomarker




\*p<0.05, \*\*p<0.01, \*\*\*p<0.001 vs. control diet, #p<0.05 #p<0.01 ###p<0.001 vs. DIN, qq<0.01 vs. DIN without ezetimibe group


# Inflammation (qPCR) Fibrosis (qPCR) 40 35 30 25 20 15 Collagen 1α1 Week 17 Week 6

#### PROGRESSION TO FIBROSIS: DIN + Low DOSE CCL





#### Steatosis (Triglycerides)



#### **END-POINTS**

- Anatomopathology (histology, immunohistology)
- Plasma and liver biomarkers:
  - lipids, inflammation
  - liver enzymes
  - gene expression quantification (qPCR): standard biomarkers and others on request

# REFERENCES

Dubuquoy C et al. Effects of pharmacological compounds on in vivo models of NAFLD associated to metabolic syndrome. SFD, 2014.

Sulpice T. et al. Prevention of liver damages by targeting different physiological mechanisms in a new murine NASH model associated with metabolic syndrome. World Diabetes Congress, 2013.



