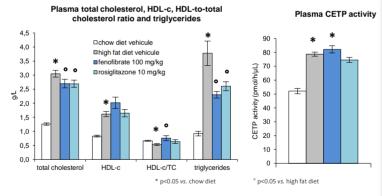


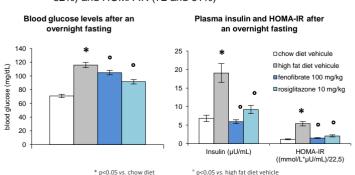
Insulin resistant and dyslipidemic hamster

A diet-induced hamster model combining insulin resistance/diabetes and dyslipidemia

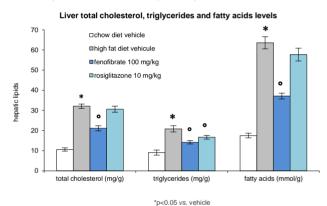
Key benefits

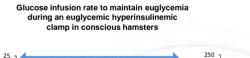

- Provides a noteworthy competitive advantage for your compound effects on both insulin resistance/diabetes, dyslipidemia and hepatic steatosis
- To select the best drug candidate in a very reproducible model with lipoprotein metabolism similar to humans
- To test the efficacy of novel drugs affecting both glucose and lipoprotein metabolism in a model validated with reference compounds

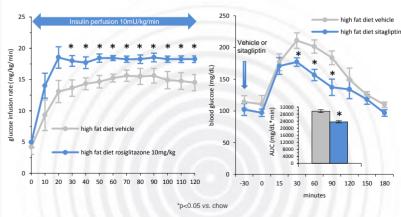
ANIMAL MODEL


- · Background Strain: Golden Syrian Hamster
- · Gender/Weight: male 90/110 g
- · Diet: High fat diet + 10% fructose in drinking water
- · Time on diet: 4 weeks
- Positive reference compounds:fenofibrate, rosiglitazone, sitagliptin

PHARMACOLOGICAL RELEVANCE


- A 4-week high fat diet induces hypercholesterolemia (140% increase), strong hypertriglyceridemia (300% increase), a 50% increase in CETP activity and a 20% decrease in HDL-c/total cholesterol ratio
- Fenofibrate lowers triglycerides and increases HDL-c/total cholesterol ratio (40% for both)
- Rosiglitazone lowers cholesterol (10%) and triglycerides (30%) plasma levels


- A 4-week high fat diet increases fasting blood glucose by 60% and plasma insulin by 180%. HOMA-IR dramatically increases by 360%
- Both fenofibrate and rosiglitazone significantly decrease fasting blood glucose (10 and 20%), plasma insulin (69 and 52%) and HOMA-IR (72 and 61%)


- A 4-week high fat diet induces a strong hepatic steatosis with a 203, 131 and 264% increase in total cholesterol triglycerides and fatty acids levels, respectively
- Rosiglitazone significantly decrease liver triglycerides by 20%.
 Fenofibrate decreases liver total cholesterol, triglycerides and fatty acids by 34, 32 and 42%, respectively

- Rosiglitazone significantly improves insulin sensitivity, as measured by glucose infusion rate during euglycemic hyperinsulinemic clamp
- Sitagliptin administered acutely significantly improves glucose tolerance by 20%

Oral glucose tolerance test in conscious hamsters

REFERENCES

Briand F. et al, Eur J Pharmacol 2014 Jul 5 (in press)

Briand F. et al, Atherosclerosis. 233(2):359-362, 2014

Briand F. et al. J Nutr. 142(4):704-9, 2012

Member of