Empagliflozin moderately increases LDL-cholesterol levels through reduced LDL catabolism while it increases slightly reverse cholesterol transport in hamsters Francois Briand¹, Noémie Burr¹, Isabelle Urbain¹, Eric Mayoux², Thierry Sulpice¹

¹Physiogenex SAS, Labège, *France*, ²Boehringer-Ingelheim, Biberach; *Germany*

0 25

0.20

. 0.15

ភ្ល៍ 0.10

0.05

0.00

С

VLDL

-e-vehicle

OBJECTIVES

Chronic treatment with SGLT2 inhibitors may induce moderate increase in plasma LDL-cholesterol levels. This effect could result from heamoconcentration in association with glucosuria and osmotic diuresis or from a shift from carbohydrate to lipid metabolism with increased ketone bodies production. Here we investigated some potential mechanisms in hamster, a preclinical model with a human-like cholesterol metabolism.

METHODS

6-week old Golden Syrian hamsters were made dyslipidemic with a 4-week high fat/high cholesterol diet with 10% fructose in drinking water.

After 2 weeks of diet, hamsters were randomized into two treatment groups according to their LDL-cholesterol and blood glucose levels.

Hamsters were then treated for 2 weeks orally, once daily with vehicle or empagliflozin at 30mg/kg, a dose inducing a 1200-fold increase in urine glucose excretion in this preclinical model.

At the end of treatment, a first set of hamsters was used to measure blood, plasma and liver biochemical parameters in fed or overnight fasting conditions. A second set of hamsters underwent radiotracer-based in vivo experiments to assess either intestinal cholesterol absorption, LDLcholesterol metabolism or macrophage-to-feces reverse cholesterol transport.

Data are expressed as mean \pm SEM. Student t-test or 2-way ANOVA+Bonferroni post test were used for statistics.

RESULTS

1. Empagliflozin raises plasma LDL-cholesterol and hepatic cholesterol levels in overnight fasting, but not fed, conditions.

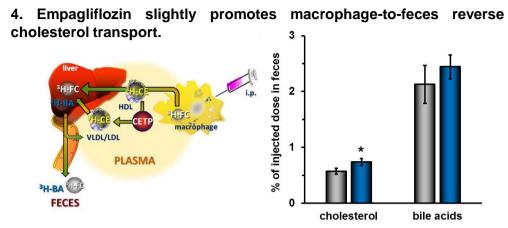
	fed conditions		overnight fasting conditions	
parameters	vehicle	empagliflozin 30mg/kg	vehicle	empagliflozin 30mg/kg
body weight (g)	110 ± 2	114 ± 2	110 ± 2	111 ± 1
hematocrit (%)	49.8 ± 0.7	$47.9\pm0.6^{\star}$	48.3 ± 0.5	49.4 ± 0.6
plasma total protein (g/L)	81.2 ± 1.8	81.9±1.8	79.6 ± 2.5	76.0 ± 1.0
blood glucose (mg/dL)	86.0 ± 5.5	88.6 ± 2.6	73.4 ± 4.0	59.9 ± 2.5*
Plasma total cholesterol (g/L)	4.0 ± 0.2	4.0 ± 0.2	3.0 ± 0.1	2.9±0.2
Plasma LDL-cholesterol (g/L)	1.8 ± 0.1	1.6 ± 0.1	1.2 ± 0.1	1.5 ± 0.1*
Plasma ketone bodies (µM)	773 ± 76	909 ± 124	3094 ± 171	6685 ± 510***
Liver weight (g)	5.61 ± 0.13	6.04 ± 0.13*	4.90 ± 0.13	4.75 ± 0.06
Hepatic triglycerides (mg/g liver)	15.1 ± 0.9	16.9 ± 0.1	16.6 ± 1.3	15.3 ± 0.7
Hepatic cholesterol (mg/g liver)	38.9 ± 0.8	40.2 ± 1.7	43.1 ± 1.9	47.7 ± 1.1*
Hepatic fatty acids (µmol/g liver)	362 ± 9	352 ± 12	386 ± 11	418 ± 8*
Hepatic ketone bodies (µmol/g liver)	12.4 ± 0.5	12.1 ± 0.5	14.7 ± 0.6	16.8 ± 0.8#
Hepatic pyruvate (µmol/g liver)	6.2 ± 0.5	6.4 ± 0.3	6.7 ± 0.4	8.0 ± 0.3*
Hepatic glycogen (mg/g liver)	39.1 ± 3.9	37.3 ± 2.2	4.31 ± 0.64	0.7 ± 0.4***
Hepatic HMGCoA reductase activity (mU/mg protein)	0.302 ± 0.034	0.357 ± 0.040	0.255 ± 0.019	$0.334 \pm 0.028^{*}$

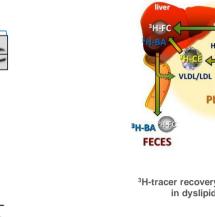
Body weight and biochemical parameters in fed or overnight fasted dyslipidemic hamsters treated with vehicle or empagliflozin 30mg/kg/day for 2 weeks.

*p<0.05 and ***p<0.01 vs. respective vehicle. #p=0.054 vs. respective vehicle.

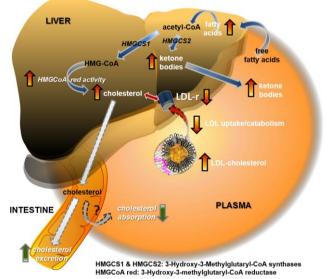
Physiogenex SAS - 516 Rue Pierre et Marie Curie 31670 Labège, FRANCE - Phone: +33 561 287 040 - contact@physiogenex.com - www.physiogenex.com

2. Empagliflozin alters lipoprotein profile with concomitant reduction in hepatic LDL-receptor expression, lower intestinal cholesterol absorption and higher fecal cholesterol mass excretion.

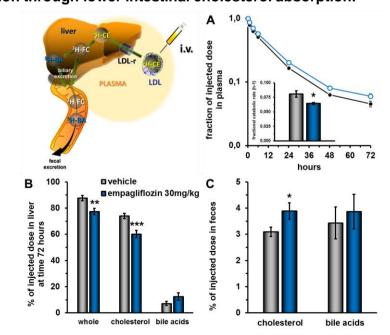

1,2

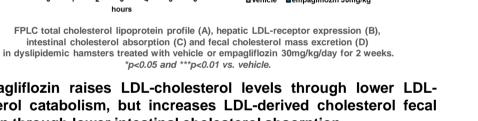

nyehicle

25


D

-O-empagliflozin 30mg/kg


by empagliflozin.


SGLT2 inhibition switches from carbohydrate to fat oxidation and stimulates ketone bodies production and hepatic cholesterol synthesis in fasting conditions. These metabolic alterations result in lower LDL-receptor expression and moderate increase in LDL-cholesterol levels A reduced intestinal cholesterol absorption and higher LDL-derived cholesterol fecal excretion were aslo observed.

CONCLUSION

3. Empagliflozin raises LDL-cholesterol levels through lower LDLcholesterol catabolism, but increases LDL-derived cholesterol fecal excretion through lower intestinal cholesterol absorption.

Plasma ³H-tracer decay curve and LDL-cholesterol catabolism (A), hepatic (B) and fecal (C) ³H-tracer recovery after ³H-cholesteryl oleate labeled LDL i.v. injection in dyslipidemic hamsters treated with vehicle or empagliflozin 30mg/kg/day for 2 weeks. *p<0.05. **p<0.01 and ***p<0.01 vs. vehicle.

³H-tracer recovery in feces after ³H-cholesterol labeled/oxidized LDL loaded macrophages i.p. injection in dyslipidemic hamsters treated with vehicle or empagliflozin 30mg/kg/day for 2 weeks. *p<0.05 vs vehicle

5. Proposed mechanisms for the alteration of cholesterol metabolism

• Empagliflozin moderately increases fasting LDL-cholesterol levels and alters cholesterol metabolism at both hepatic (cholesterol synthesis) and intestinal (cholesterol absorption) levels.

• The increase in LDL-cholesterol levels is related to lower LDLreceptor expression and LDL-cholesterol catabolism.

• Despite the moderate increase in LDL-cholesterol levels, empagliflozin promotes two anti-atherogenic mechanisms by increasing both macrophage-to-feces reverse cholesterol transport and LDL-derived cholesterol fecal excretion,